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Model order reduction techniques have been used in the last decades to perform fast simulations of sets of equations obtained by field 

computation methods like PEEC. More specifically, moment matching approaches have been especially successful for this application. 

However, some attention must be paid in computation of the projection subspace to be able to produce real state space equations for the 

reduced system. In order to do this, a modified Arnoldi iteration is presented in this paper. This technique assures that the computed 

projection matrix is real and orthogonal. A loop antenna, obtained by PEEC, is used as an application example with very encouraging 

results. 

 
Index Terms — Dynamical Systems, Model Order Reduction, Moment Matching and PEEC.  

 

I. INTRODUCTION 

HE advances in the past decades have allowed the 

simulation of electromagnetic systems to a high degree of 

accuracy. The Finite Elements Method (FEM) and the Partial 

Element Equivalent Circuit (PEEC) are among of the most 

successful techniques [1]. These methods can produce High-

Fidelity Models (HFM) for a variety of applications. However, 

if the problem is too complex or the required accuracy is very 

high, many differential equations are obtained. 

It is in this context that Model Order Reduction (MOR) 

techniques can be applied to obtain fast and accurate solutions. 

Instead of directly solving the equations of the HFM, one can 

construct a smaller model that represent very well the 

input/output behavior of the original system but is faster to 

compute. There are some well-established methods to achieve 

this like Balanced Truncations, Proper Orthogonal 

Decomposition and Moment Matching [2]. For the reduction of 

electrical circuits, like those obtained by PEEC techniques, 

PRIM and SPRIM are particularly successful [3]. 

One way of expressing the differential equations obtained in 

numerical modeling is shown in (1). In this equation 𝐴 and 𝐸 ∈
ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×𝑝, 𝐶 ∈ ℝ𝑞×𝑛, 𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑝 and 𝑦 ∈ ℝ𝑞. The 

number n is the order of the model and p and q are, respectively, 

the number of inputs and outputs of the system. The vector x is 

the state vector of the dynamical system and u and y are its input 

and output vectors, respectively. 
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Moment Matching techniques produce Reduced Order 

Models (ROM) whose transfer function are, up to a given order, 

equal to those of the HFM (1) at a given expansion point. This 

is done by the projection of the HFM into the subspace spanned 

by the columns of a matrix V, computed by the reduction 

algorithm, which results in the reduced system in (2). 
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To guarantee accuracy, complex expansion points are 

normally chosen. This will produce a complex projection 

matrix V and, therefore, a complex ROM. This poses problems 

to the physical interpretation of the reduced model. There are 

solutions to this problem that are, however, not very robust from 

a numerical point of view. In this paper, an alternative solution 

to produce a real subspace for the choice of complex expansions 

points is proposed. 

II. MOMENT MATCHING 

To produce ROMs whose transfer functions have the same 

moments of the HFM, the span of the projection matrix V must 

contain the subspace spanned by a matrix whose j-th column is 

given by (3). In this equation, 𝑠0 is the complex expansion 

point. Therefore, V is, in general, complex. 
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The direct computation of such matrix is normally done by 

the Arnoldi Iteration [4], used to build a unitary matrix whose 

columns span the desired subspace. At each iteration, the vector 

resulting from the matrix-vector product is orthogonalized to all 

the previously computed vectors. A real projection matrix can 

be obtained by placing the real and imaginary parts of the 

complex matrix side by side [5]. This, however, requires an 

additional rank-revealing orthogonalization process. Also, 

during the iterations, the vectors are being orthogonalized in 

respect to the complex vectors and not in respect to their real 

and imaginary parts, which results in partial loss of numerical 

robustness of the algorithm. 
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III. MODIFIED ARNOLDI ITERATION 

The proposed modified iteration, which uses an on the fly 

orthogonalization scheme, starts with a complex vector given 

by the first column of (3). The real and imaginary parts of this 

vector are separated and orthogonalized in relation to each 

other, producing an orthogonal V matrix of two columns. The 

next vector is obtained by the product of the matrix 

(𝐴 − 𝑠0𝐸)−1𝐸 to the last column of V. This will produce a new 

complex vector. First, the real part of this vector is 

orthogonalized to every column of V and added into a new 

column. Then, the same process is done to the imaginary part. 

This should be repeated until the chosen number of moments 

are matched or deflation occurs for both real and imaginary 

parts. The resulting matrix is real, orthogonal and spans the 

desired subspace. 

One must notice that the modified Arnoldi iteration and the 

classical one do not produce the same subspace for arbitrary 

matrices. This new approach only works because of the very 

special structure of the Krylov subspace when it is constructed 

for MOR applications. 

IV. APPLICATION EXAMPLE 

As an example of application, a loop antenna, illustrated by 

Figure 1, obtained by the PEEC method [6] was reduced using 

both the classical technique and the proposed one. 

 

 
Fig. 1. Illustration of the loop antenna used as example. 

 

This model has order 4650. Its output is the impedance of the 

system for different frequencies and its simulation for a 

thousand points takes around 26 minutes. Figure 2 shows the 

response of both reduced models. The time of the simulation for 

both ROM’s are of the order of 20 ms. 

 
Fig. 2. Impedance of the system obtained using ROM’s compared to the high-

fidelity value. 

Both ROM’s used 1 GHz as the expansion point with 20 

moments matched. It is then expected that the projection matrix 

contains 40 vectors, 2 for each moment matched. Table 1 

contains some information about the reduction process for both 

methods. It is clear that the orthogonalization at the end of the 

strategy has produced subspaces with linearly dependent 

vectors. They are eliminated by the post processing step, thus 

spending computational time that does not translate into any 

additional accuracy of the ROM. 

TABLE I 

RESULTS OF THE REDUCTION PROCESS 

Orthogonalization 

Technique 

Average 

Reduction time [s] 

Size of the 

Final 
Subspace 

Discarded 

Vectors 

at the End 8.75 35 5 

on the Fly 8.46 40 0 

 

The error for these two models in relation to the HFM can be 

seen in the Figure 3. The proposed method has lower error than 

the classical approach in the biggest part of the frequency range. 

 
Fig. 3. Error obtained for the two different reduction approaches. 

V. CONCLUSION 

A new way of computing the Krylov subspace for projection 

based model order reduction was presented. An application 

example has shown that this new approach produces very 

encouraging results. The full paper will contain the 

mathematical demonstrations that the subspace spanned for the 

modified Arnoldi iteration is the same as the classical one in 

infinite precision arithmetic. 
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